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Rayleigh–Taylor problem for a liquid–liquid
phase interface
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A linear stability analysis of the Rayleigh–Taylor problem for an incompressible fluid
undergoing a liquid–liquid phase transformation is presented. Both inviscid and
linearly viscous fluids are considered and interfacial tension is taken into account.
Instability is possible only when the phase with the higher density is above that with
the lower density. Study of the inviscid case shows that the exchange of mass between
the phases decreases significantly both the range of unstable wavenumbers and the
maximum growth rate for unstable perturbations as compared to those arising classi-
cally. For a linearly viscous fluid, the shear and dilational viscosities of the interface
are taken into account as are the migrational viscosities associated with the motion of
the interface relative to the underlying fluid. When no mass exchange occurs between
the phases in the base state and the interfacial viscosities are neglected, the growth
rates exceed by at least an order of magnitude those for the classical Rayleigh–Taylor
problem. The various interfacial viscosities slow the growth rates of disturbances,
but do not influence the range of unstable wavenumbers. For both the inviscid and
viscous cases, interfacial tension plays the same stabilizing role as it does classically.

1. Introduction
A single-component fluid may exist in more than one isotropic liquid phase (Angell

1995). A process in which one such phase grows at the expense of another is
called a ‘liquid–liquid phase transformation’. Experimental evidence indicates that
liquid–liquid phase transformations occur in a variety of substances. Aasland &
McMillan (1994) reported a density-driven liquid–liquid phase transformation in a
supercooled melt of Al2O3–Y2O3. Togaya (1997) and Glosli & Ree (1999) studied
high-pressure liquid–liquid phase transformations in carbon. Katayama et al. (2000)
used in situ X-ray diffraction to establish the existence of a first-order liquid–liquid
phase transformation in phosphorus. From the theoretical perspective, Kurita &
Tanaka (2005) argued that liquid–liquid phase transformations are possible in
various molecular liquids, which – owing to anisotropic interactions associated with
hydrogen bonding – have a tendency to form long-lived locally-favoured structures.
Although evidence of such transformations has emerged only relatively recently, their
importance in various chemical engineering processes is well-recognized (Tanaka 2000;
Lee & Swendsen 2001; Rzehak, Müller-Krumbhaar & Marquardt 2003). An example
of a process designed to take advantage of a transformation between two liquid
phases is provided by hetergenerous azeotropic distillation (Widagdo & Seider 1996),
where the transformation facilitates separation. Liquid–liquid phase transformations
may also occur as undesired side-effects during vapour- or gas-liquid unit operation.
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Typical examples are provided by condensation (Burghardt & Bartelmus 1994), boiling
heat transfer (Troniewski et al. 2001), mass transfer in falling film devices, and
distillation in trays or packed columns (Siegert et al. 2000). In these examples, liquid–
liquid phase transformations may seriously undermine the efficiency of the intended
operations (Rzehak et al. 2003).

Despite the scientific and technological importance of liquid–liquid phase trans-
formations, questions concerning the hydrodynamic stability of an interface separating
the two liquid phases undergoing transformation do not appear to have been ad-
dressed prior to this work.

Hydrodynamic stability has been recognized as one of the central issues of fluid
mechanics for more than a century. It has applications to engineering design, to met-
eorology and oceanography, and to astrophysics and geophysics. When a heavy fluid
is superposed over a light fluid in a gravitational field and surface tension is neglected,
the interface between the fluids is catastrophically unstable. Any perturbation of the
interface tends to grow with time, producing the phenomenon known as Rayleigh–
Taylor instability.

Rayleigh (1900) and Taylor (1950) considered the case of two incompressible fluids
and predicted this instability by means of linear analysis that took into account the
effects of inertial and body forces. The exponential growth rate determined by such
treatment is proportional to

√
k, with k being the wavenumber of the perturbation.

The experimental studies of Lewis (1950) showed that, for an liquid–air interface, this
prediction was nearly correct during the initial phase of the instability. Linearized
stability analyses were later extented to include the effects of surface tension,
viscosity and spatially non-uniform density distributions during the initial stage
of the instability. Bellman & Pennington (1954) studied the effect of surface tension
and found the cutoff wavenumber kc below which perturbations are unstable, to be

kc =

√
(�+ − �−)g

γ
, (1.1)

where �+ and �− denote the constant densities of the fluids above and below the
interface, g is the magnitude of acceleration due to gravity, and γ is the surface tension.
When surface tension is neglected, the system is unstable whenever �+ > �−. However,
when surface tension is taken into account, the system is linearly stable provided that
k > kc. Still when k is sufficiently small, or the wavelength is sufficiently long, the equi-
librium system is unstable if the heavier fluid is on top of the lighter fluid. The cutoff
wavenumber defined by (1.1) is unchanged when viscous effects are taken into account.
In particular, Chandrasekhar (1955, 1961) provides an expression for the variation of
the linear growth rate with both the Reynolds number Re and the Atwood number,

At =
�+ − �−

�+ + �−
, (1.2)

both without and with surface tension.
So far, studies of interfacial instability have been limited to the case where the

interface separating the two fluids is a material surface. In this case, there is no transfer
of mass across the interface. Thermal effects often play only a secondary role;
therefore, the effect of heat transfer had also been neglected for the classical Rayleigh–
Taylor problem. However, there are situations when the effect of mass or heat transfer
across the interface are essential in determining the flow field. Hsieh (1978) presented
a simple formulation to deal with interfacial instability problems involving mass and
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Figure 1. Schematic of the (+) and (−) phases and the disturbed interface.

heat transfer. For an inviscid liquid–vapour system, he found that the effects of mass
and heat transfer tend to enhance the stability of the system when the vapour is hotter
than the liquid, although the classical stability criterion is still valid. Later authors
such as Higuera (1987) studied the hydrodynamic stability of an evapourating liquid
including the effect of fluid viscosities. He employed the classical Hertz–Knudsen–
Langmuir equation (Hertz 1882; Knudsen 1915; Langmuir 1916) to connect the mass
flux with the thermodynamic conditions at the interface. The destabilizing effects
of the perturbations of gas pressure and vapourizing mass flux, previously pointed
out by Plesset & Prosperetti (1982) in inviscid fluids, were recovered in a slightly
more general setting, and their competition with the stabilizing effects of gravity and
surface tension led to a stability limit.

In parallel with work on hydrodynamic stability, an extensive literature has deve-
loped concerning the morphological stability of phase interfaces. Mullins & Sekerka
(1963) considered a spherical particle growing into a supersaturated solution and
stability of the planar front during directional solidification of a binary liquid. In
investigating the evolution of small perturbations of the interface, Mullins & Sekerka
(1963) provided a rigorous basis of linear morphological instability at low solidifica-
tion velocities. Trivedi & Kurz (1986) advanced the analysis of Mullins & Sekerka
(1963) for the case of rapid solidification and developed stability criteria dependent
upon the interfacial velocity. Following the analytical procedure of Trivedi & Kurz
(1986), Galenko & Danilov (2004) extended the model by introducing the local non-
equilibrium in the solute diffusion field around the interface. Using this model, they
presented a self-consistent analysis of the neutral and absolute morphological stability
of a rapidly moving interface. In liquid–solid systems, the most common supplemental
constitutive relation to correlate solute concentration to the geometric properties of
the interface is the Gibbs–Thomson equation (Volmer 1939).

The goal of this work is to extend the understanding of the Rayleigh–Taylor instabi-
lity to account for transformation between the two liquid phases. This problem is of
natural importance, just as it is for the liquid–vapour and liquid–solid phase trans-
formations. Specifically, the behaviour of a planar interface under one-dimensional
infinitesimal sinusoidal disturbances is studied (figure 1). The phases above and below
the interface are denoted by (+) and (−), respectively. When a phase transformation
occurs across the interface, the interfacial expressions for balance of mass, momentum
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and energy fail to provide a closed description and must be supplemented by an
equation that accounts for the microphysics underlying the exchange of material
between the phases. The Hertz–Knudsen–Langmuir and Gibbs–Thomson equations
serve this role in sharp-interface models for liquid–vapour and liquid–solid phase
transformations, respectively. The Gibbs–Thomson equation is typically derived using
a variational argument which rules out the consideration of dissipative mechanisms.
Gurtin & Struthers (1990) took a completely different point of view and used an argu-
ment based on invariance under observer changes to conclude that a configurational
force momentum should join the standard force momentum as a basic law of con-
tinuum physics. On this basis, Anderson et al. (2006) developed a complete set of equa-
tions governing the evolution of a sharp interface separating two fluids undergoing
transformation. In this paper, the bulk and interfacial evolution equations considered
are the isothermal specialization of equations derived by Anderson et al. (2005).

For the bulk phases, the evolution equations are standard and consist of the
continuity equation

divu = 0 (1.3)

and the linear momentum balance

�
Du
Dt

= −gradpe + divS, (1.4)

where � = �± is the constant density in the (±) phase, pe is the effective pressure
accounting for the potential of the gravitational body force density −�g, and the
extra stress in the (±) phase is simply

S = 2µ±D, (1.5)

where µ = µ± is the (constant) viscosity the (±) phase and D = (gradu + (gradu)�)/2
is the rate-of-stretch. By treating the phases as incompressible, we, in effect, model
them as large reservoirs with spatially uniform and time-independent densities that
are unaffected by mass exchange across the interface. Importantly, the densities of
the phases differ.

On the interface, the evolution equations consist of the mass balance, the linear
momentum balance, and the normal configurational momentum balance. The inter-
facial mass balance has the form

[[�(V − u · n)]] = 0 or J = �+(V − u+ · n) = �−(V − u− · n), (1.6)

where [[ϕ]] = ϕ+ − ϕ− denotes the difference between the interfacial limits of a bulk
field in the (+) and (−) phases, n is the interfacial unit normal directed from the
(−) phase into the (+) phase, V is the scalar normal velocity of the interface in the
direction of n, and J is the mass flux normal to the interface. The interfacial linear
momentum balance has the form

[[S]]n − [[pe]]n − J 2[[1/�]]n = −γKn − divS�, (1.7)

where γ > 0 is the (constant) interfacial tension, K is the total curvature (i.e. twice
the mean curvature) of the interface, and the surface extra stress � is of the classical
form (Boussinesq 1913; Scriven 1960)

� = λ(tr�)� + 2α�, (1.8)

where � = 1 − n ⊗ n is the interfacial projector, � = �〈〈D〉〉� is the interfacial
rate of stretch (with 〈〈ϕ〉〉 = (ϕ+ + ϕ−)/2 being the average of the interfacial limits
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of a bulk field ϕ in the (+) and (−) phases), and λ + α > 0 and α > 0 and
are the (constant) dilatational and shear viscosities of the interface. The normal
configurational momentum balance has the form

Ψ − n · [[S/�]]n + [[pe/�]] + 1
2
J 2[[1/�2]] = 〈〈1/�〉〉{κV mig − β�SV mig + �:�}, (1.9)

where Ψ is the (constant) specific free energy of the (+) phase relative to that of the
(−) phase, V mig = V − 〈〈u〉〉 · n is the migrational velocity of the interface, �S – which
is defined for any surface field ϕ by �Sϕ = divS(gradSϕ) – is the Laplace–Beltrami
operator on the interface, � is the curvature tensor of the interface, and κ > 0
and β > 0 are the (constant) migrational viscosities of the interface. Whereas κ is
associated with viscous drag that impedes the local motion of the interface normal
to itself, β is associated with viscous drag that impedes the local reorientation of the
interface. For further discussion of these viscosities, see Anderson et al. (2005).

As Anderson et al. (2005) note, the linear momentum balance (1.7) and the normal
configurational momentum balance (1.9) combine to yield the relation

Ψ − [[1/�]]n · 〈〈S〉〉n + [[1/�]]〈〈pe〉〉 = −〈〈1/�〉〉{γK − κV mig + β�SV mig}, (1.10)

which can be imposed in place of (1.9). Simplifying assumptions that reduce (1.10) to
the Gibbs–Thomson equation are discussed by Anderson et al. (2006).

For a viscous fluid (µ+ �= 0 and µ− �= 0), the interface conditions (1.6)–(1.9) are
supplemented by the kinematical condition

�[[u]] = 0, (1.11)

which enforces the requirement that the phases do not slip with respect to one another.
The objective of this paper is to investigate the linear instability for an

incompressible Newtonian fluid undergoing a liquid–liquid phase transformation. The
governing equations are linearized in the standard manner. For inviscid fluids, the
interface conditions (1.6)–(1.9) are used to correlate the three disturbace amplitudes
arising from the bulk equations (1.3) and (1.4) (with S = 0). Similarly, when viscosity
is taken into account, the supplemental no-slip condition (1.11) for the interface is
used in addition to (1.6)–(1.9) to determine the five unknown disturbance amplitudes
arising from the bulk equations (1.3) and (1.4). For inviscid fluids, we consider the
influence of the initial mass flux across the interface on the growth of the disturbance.
This effect is found to stabilize the disturbed system by moderating the propagation
of the growth rate and decreasing the range of unstable wavenumbers. For viscous
fluids, we consider only the case where the base state does not involve mass transfer
between the phases. In this case, the cutoff wavenumber is found to be identical to
that of the classical Rayleigh–Taylor problem. Moreover, the disturbances are found
to grow significantly faster than those of the classical Rayleigh–Taylor problem. The
effects of the Reynolds number, Weber number, and Froude number on the growth
rate of the disturbance are all considered. Also, the presence of the various interfacial
viscosities α, α+λ, κ and β leads to the consideration of three additional dimensionless
quantities – the Boussinesq, Voronkov, and Gurtin numbers – all of which attenuate
the growth of disturbances.

2. Base state
Using notation consistent with figure 1, consider a stationary base state in

which the (−) and (+) phases occupy the time-dependent regions {x : x2 <V0t} and
{x : x2 >V0t}, repectively. The interface then corresponds to the time-dependent
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surface {x : x2 = V0t}. Suppose that the velocity and pressure in the base state
are constant and given by u±

0 = u0e1 +v±
0e2 and p±

0 . The bulk equations (1.3) and (1.4)
then hold trivially. However, the interfacial equations (1.6), (1.7) and (1.9) require
that the parameters v±

0 , p±
0 and V0 describing the base state be consistent with the

equations

[[�(V0 − v0)]] = 0, (2.1a)

[[pe]] + J 2
0 [[1/�]] = 0, (2.1b)

Ψ + [[pe/�]] + 1
2
J 2

0 [[1/�2]] = 〈〈1/�〉〉κ(V0 − 〈〈v0〉〉), (2.1c)

where

J0 = �+(V0 − v+

0 ) = �−(V0 − v−
0 ) (2.2)

denotes the mass flux across the interface in the base state.
When J0 = 0, there is no mass transport between the phases in the base state. By

(2.2),

v+

0 = v−
0 = V0 (2.3)

and the fluid velocity is continuous in the base state. Moreover, (2.1b) and (2.1c)
reduce to

[[pe]] = 0, Ψ + [[pe/�]] = 0. (2.4)

3. Inviscid case
We first consider the idealized case of a fluid that is inviscid in the sense that the

bulk viscosities µ+ and µ− as well as the interfacial viscosities α, λ, κ and β vanish.
For such a fluid, the linear momentum balance (1.4) becomes

�
Du
Dt

= −gradpe. (3.1)

Further, the interfacial linear momentum balance (1.7) and the normal configurational
momentum balance (1.9) become

[[pe]] + J 2[[1/�]] = γK, (3.2a)

Ψ + [[pe/�]] + 1
2
J 2[[1/�2]] = 0. (3.2b)

3.1. Bulk disturbance

For an infinitesimal sinusoidal increment, indicated by the subscript 1, to the base state,
the velocity and pressure in the (±) phase become u± = u±

0 + εu±
1 and p± = p±

0 + εp±
1 ,

with ε � 1 and

(u±
1, v

±
1 , p

±
1 )(x1, x2, t) = (u±

1, v
±
1 , p

±
1 )(y) exp

{
ikx +

ωt

|At|T

}
, (3.3)

where

x =
x1 − u0t

L
, y =

x2 − V0t

L
, (3.4a, b)

k > 0 is the dimensionless wavenumber of the perturbation, ω is the dimensionless
growth rate of the perturbation, and L and T are characteristic length and time scales.

Inserting (3.3) into the continuity equation (1.3) and the momentum balance (3.1),
neglecting terms of O(ε2), and cancelling a common factor of exp(ikx + ωt/|At|T )
from each term, we arrive at a system of three ordinary differential equations for each
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phase. On writing D = d/dy, that system takes the form

iku±
1 + Dv±

1 = 0, (3.5a)

�±

{
V0 − v±

0

L
D − ω

|At|T

}
u±

1 =
ik

L
p±

1 , (3.5b)

�±

{
V0 − v±

0

L
D − ω

|At|T

}
v±

1 =
1

L
Dp±

1 . (3.5c)

Eliminating p±
1 and u±

1 from this system yields an ordinary differential equation,

(D2 − k2)

{
J0D − �±Lω

|At|T

}
v±

1 = 0, (3.6)

for v±
1 . The characteristic roots of this equation are ±k and, when J0 �=0, �±Lω/

J0|At|T . To rule out infinite fluid velocities in the far field, we exclude from considera-
tion the last of these roots (which is of indeterminate sign) and take v1 to be of the
form

v1(y) =

{
A+ exp(−ky), y > 0,

A− exp(ky), y < 0,
(3.7)

with A+ and A− being unknown amplitudes. In view of (3.7), the system (3.5) yields
expressions

u1(y) =

{
−iA+ exp(−ky), y > 0,

iA− exp(ky), y < 0,
(3.8)

and

p1(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+

{
J0 +

�+Lω

|At|T k

}
exp(−ky), y > 0,

A−

{
J0 − �−Lω

|At|T k

}
exp(ky), y < 0,

(3.9)

for u1 and p1.

3.2. Interfacial disturbance

We assume that the bulk disturbance is accompanied by an infinitesimal interfacial
disturbance of the form x2 =V0t + εF (x1, t). Direct calculations then show that

n ∼ −ε
∂F

∂x1

e1 + e2, K ∼ ε
∂2F

∂x2
1

,

V ∼ V0 + ε
∂F

∂t
, J ∼ J0 + ε�±

{
∂F

∂t
+ u0

∂F

∂x1

− v±
1

}
,

V mig ∼ V
mig
0 + ε

{
∂F

∂t
+ u0

∂F

∂x1

− 〈〈v1〉〉
}

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

Consistent with the form (3.3) of the bulk disturbance, we take

F (x1, t) = C exp

{
ikx +

ωt

|At|T

}
, (3.11)

where x is as defined in (3.4a) and C is an additional unknown amplitude.
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3.3. Amplitude equations

The bulk and interfacial disturbances involve three unknown amplitudes A+, A− and
C. However, we have yet to make use of the interface conditions (1.6), (3.2a) and
(3.2b) expressing mass balance, linear momentum balance and normal configurational
momentum balance. Inserting the assumed forms for the velocity and the interface
profile in the mass balance (1.6), using (3.7) and (3.8), and invoking the condition
(2.1a) in the base state, dropping terms of O(ε2), and cancelling a common factor of
exp(ikx + ωt/|At|T ) from each term, we obtain

�+A+ − �−A− =
2〈〈�〉〉ω

T
C. (3.12)

Proceeding similarly with the linear momentum balance (3.2a) and the normal
configurational momentum balance (3.2b), we obtain

�+

{
J0k

�−
+

Lω

|At|T

}
A+ − �−

{
J0k

�+
− Lω

|At|T

}
A− =

{
[[�]]g − γ k2

L2
+

2J0〈〈�〉〉[[�]]ω

�+�−|At|T

}
kC,

(3.13)

where g = |g| denotes the magnitude of the acceleration due to gravity, and{
�+J0〈〈1/�2〉〉k +

Lω

|At|T

}
A+ −

{
�−J0〈〈1/�2〉〉k − Lω

|At|T

}
A− =

2〈〈�〉〉2
[[�]]kω

(�+�−)2|At|T C. (3.14)

3.4. Dispersion relation

Equations (3.12)–(3.14) provide a homogeneous linear system for the disturbance
amplitudes A+, A− and C. Had we imposed only mass balance and linear momentum
balance on the interface, this system would be underdetermined. This underlines
the need for an additional interface condition – provided here by the normal
configurational momentum balance – to account for the microphysics of the phase
transformation. Necessary and sufficient for the system (3.12)–(3.14) to yield a non-
trivial solution is the requirement that its determinant vanish. This requirement yields
the dispersion relation

ω2 +

{
γ k2

2〈〈�〉〉gL2
− At

}
gT 2k

L
+

J 2
0 T 2At2k2

�+�−L2
= 0. (3.15)

Defining the Weber and Froude numbers via

We =
〈〈�〉〉gL2

γ
, Fr =

L

gT 2
, (3.16)

and introducing the dimensionless interfacial mass flux

j =
J0T

〈〈�〉〉L, (3.17)

we may rewrite the dispersion relation (3.15) in the form

ω2 =

{
At − k2

2We

}
k

Fr
− At2j 2k2

1 − At2
. (3.18)



Rayleigh–Taylor problem for a liquid–liquid phase interface 403

3.5. Analysis of the dispersion relation

3.5.1. Base process without mass transport: j = 0

We consider first the case where the base state does not involve mass transport
across the interface, so that j = 0 and (3.18) reduces to

ω2 =

{
At − k2

2We

}
k

Fr
. (3.19)

From (3.19), it follows immediately that the base state is linearly unstable when
At > 0 and the wavenumber k obeys 0 < k < kc =

√
2AtWe=

√
[[�]]g/γL. Bearing in

mind that k is dimensionless, the cutoff wavenumber is equivalent to that derived
by Bellman & Pennington (1954) for the classical Rayleigh–Taylor problem. When
At < 0, so that the phase with the lower density is above that with the higher density,
the growth rate ω is pure imaginary and the system is neutrally stable. Hence, for an
inviscid fluid and a base state with j =0, the stability results are the same as those
for the classical Rayleigh–Taylor problem.

3.5.2. Base process with mass transport: j �= 0

When j �= 0, (3.18) includes a stabilizing term associated with the exchange of mass
between the phases in the base state. This term influences both the range of unstable
wavenumbers and the magnitude of the growth rate when instability is present. In
particular, an easy calculation shows that when j �= 0, the cutoff wavenumber kc below
which perturbations are unstable is given by

kc =

√(
WeFrAt2j 2

1 − At2

)2

+ 2AtWe − WeFrAt2j 2

1 − At2
. (3.20)

Since
√

a2 + b � a +
√

b for a > 0 and b > 0, it follows that kc as given by (3.20) is
less than or equal to the cutoff wavenumber

√
2AtWe for classical Rayleigh–Taylor

problem. Further, when j �= 0, the maximum growth rate ωm is given by

ωm =

√(
At − k2

m

2We

)
km

Fr
− At2j 2k2

m

1 − At2
, (3.21)

where km, which is the most unstable wavenumber, is defined by

km =
2

3

⎧⎨
⎩

√(
WeFrAt2j 2

1 − At2

)2

+
3AtWe

2
− WeFrAt2j 2

1 − At2

⎫⎬
⎭ . (3.22)

Careful examination of (3.20) and (3.21) reveals that neither kc nor ωm grows mono-
tonically with the Atwood number At: kc and ωm both vanish for the limit At → 0,
attain maxima at disparate values of At in the open interval (0, 1), and vanish for the
limit At → 1. This behaviour is illustrated in figure 2 for We= 0.1 and Fr = 1.

Again, since
√

a2 + b � a +
√

b for a > 0 and b > 0, it follows from (3.22) that

km �

√
2AtWe

3
. (3.23)

Hence, the most unstable wavenumber for the problem involving a phase transforma-
tion is always less than or equal to its counterpart for the classical Rayleigh–Taylor
problem. This behaviour is illustrated in figure 3 for We= 0.1 and Fr= 1.
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Figure 2. Variation of the cutoff wavenumber kc and the maximum growth rate ωm with the
Atwood number At: (a) kc; (b) ωm. Combinations of k and At below the kc-curve are unstable.
We= 0.1; Fr = 1; j = 0.9.
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Figure 3. Variation of the most unstable wavenumber km with the Atwood number At. Solid
line: phase transformation. Dashed line: no phase transformation. We= 0.1; Fr = 1.
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Figure 4. Comparison of the relation for the growth rate ω versus the wavenumber k for
various values of the Atwood number At: (a) j = 0.9 (b) no phase transformation. We =0.1;
Fr = 1. —, At = 0.05; - - -, 0.1; –·–, 0.5.

Plots of the growth rate ω versus the wavenumber k for the Rayleigh–Taylor
problem with a phase transformation (with j = 0.9) and the classical Rayleigh–Taylor
problem are provided, for We= 0.1, Fr =1, and various values of At, in figure 4.
Consistent with the foregoing discussion, these plots show little difference when
At � 1. However, for relatively large At, the growth rate of any unstable mode is
considerably depressed and the cutoff wavenumber below which perturbations are
unstable is reduced.
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Referring to (3.18), we observe that the growth rate increases with increasing Weber
number We, but decreases with increasing Froude number Fr.

Even when interfacial tension is neglected, the mass transport term stabilizes
the system when the disturbance wave number is above the cutoff wavenumber
kc = (1 − At2)/AtFrj 2. This stabilizing effect also vanishes when At → 1.

Finally, although intuitive reasoning might suggest that, of the two possibilities,
only a mass flux from the (−) phase to the (+) phase would stabilize the system, our
linear analysis indicates that the direction of the mass flow in the base state does not
affect stability since the dimensionless mass flux coefficient j appears in (3.18) only in
terms of j 2. A linear analysis carried to a higher order or a nonlinear analysis might
lead to different conclusions regarding the role of the direction of mass flow in the
base state. The inclusion of viscosity is also likely to alter the stability of the system.

4. Viscous case
We now study the influence of the various viscosities on the stability of the base

state. For simplicity, we take the kinematic viscosities of the phases to be equal, so
that

µ+

�+
=

µ−

�−
= ν. (4.1)

As an additional simplifying assumption, we confine attention to base states that do
not involve mass exchange between the phases. (Mass exchange in response to the
perturbation of the interface is, however, allowed.) Thus, J0 = 0 and v+

0 = v−
0 =V0.

We consider bulk and interfacial disturbances identical to those imposed in the
inviscid case. Proceeding as in the inviscid case, the continuity equation (1.3) and the
momentum balance (1.4) yield (3.5a) and

�±

{
ν

L2
(D2 − k2) − ω

|At|T

}
u±

1 =
ik

L
p±

1 ,

�±

{
ν

L2
(D2 − k2) − ω

|At|T

}
v±

1 =
1

L
Dp±

1 .

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

Eliminating p±
1 and u±

1 from this system yields an ordinary differential equation,

(D2 − k2)(D2 − q2)v±
1 = 0 with q =

√
k2 +

L2ω

|At|T ν
, (4.3)

for v±
1 . To rule out infinite fluid velocities in the far field, we choose v1 to be of the

form

v1(y) =

{
A+ exp(−ky) + B+ exp(−qy), y > 0,

A− exp(ky) + B− exp(qy), y < 0,
(4.4)

where A± and B± are unknown amplitudes. In view of (4.4), (3.5a) and (4.2) yield
expressions

u1(y) =

⎧⎪⎨
⎪⎩

−iA+ exp(−ky) − iB+q

k
exp(−qy), y > 0,

iA− exp(ky) +
iB−q

k
exp(qy), y < 0,

(4.5)
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and

p1(y) =

⎧⎪⎪⎨
⎪⎪⎩

A+�+Lω

|At|T k
exp(−ky), y > 0,

−A−�−Lω

|At|T k
exp(ky), y < 0,

(4.6)

for u1 and p1.
When viscosity is taken into account, the interface conditions (1.6), (1.7) and (1.9)

imposing mass balance, linear momentum balance and configurational momentum
balance supplemented by the no-slip condition (1.11) lead to a system of five equations
connecting the unknown amplitudes A+, A−, B+, B− and C of the disturbance.
Proceeding as in the inviscid case, but making use of the simplified base equations
(2.4) instead of (2.1b) and (2.1c), we find that the mass balance (1.6) yields

�+(A+ + B+) − �−(A− + B−) =
[[�]]ω

|At|T C. (4.7)

In contrast to the inviscid case, the linear momentum balance (1.7) now gives rise to
non-trivial components in both the e1 and the e2 directions. In the e1-direction, (1.7)
yields {

2�+k2 +

(
α + 1

2
λ
)
k3

νL

}
A+ +

{
�+(k2 + q2) +

(
α + 1

2
λ
)
k2q

νL

}
B+

−
{

2�−k2 +

(
α + 1

2
λ
)
k3

νL

}
A− −

{
�−(k2 + q2) +

(
α + 1

2
λ
)
k2q

νL

}
B− = 0. (4.8)

Importantly, (4.8) involves the combination α + λ/2 of α and λ. Since α > 0 and
α+λ> 0, it follows that α+λ/2 = α/2+(α+λ)/2 > 0. Hereinafter, we refer to α+λ/2
as the effective viscosity of the interface. Further, in the e2-direction, (1.7) yields{

2νk2

L2
+

ω

|At|T

}
(�+A+ + �−A−) +

2νkq

L2
(�+B+ + �−B−) =

k

L

{
[[�]]g − γ k2

L2

}
C. (4.9)

Next, the normal configurational momentum balance yields (1.9){
2νk2

L2
+

(
κ +

βk2

L2

)
〈〈1/�〉〉k

2L
+

ω

|At|T

}
(A+ + A−)

+

{
2νkq

L2
+

(
κ +

βk2

L2

)
〈〈1/�〉〉k

2L

}
(B+ + B−) =

{
κ +

βk2

L2

}
〈〈1/�〉〉kω

|At|LT
C. (4.10)

Finally, the no-slip condition (1.11) yields

kA+ + qB+ + kA− + qB− = 0. (4.11)

The dispersion relation arising from the requirement that the determinant of the
homogeneous system (4.7)–(4.11) vanish takes the form

2ω2q

|At|

{
ω2 +

4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

(
k2

2We
− At

)
k

Fr

}

+
2Bok2qω

Re

{
qω2 +

(
k2

2We
− At

)
k(q − k)

Fr

}
− kω

{
1

Vo
+

k2

Gu

}{(
k − q

At2

)
ω2
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−k(q − k)

(
4|At|k

Re

(
ω − |At|k(q − k)

Re

)
+

k2

2WeFr
− At

Fr

)}
+

Bok3(q − k)

Re

×
{

1

Vo
+

k2

Gu

}{
2qω2

|At | +

(
k2

2We
− At

)
|At|k(q − k)

Fr

}
= 0, (4.12)

where

Re =
L2

νT
, Bo =

λ + 2α

2〈〈�〉〉νL
, Vo =

L

〈〈1/�〉〉κT
, and Gu =

L3

〈〈1/�〉〉βT
(4.13)

are the Reynolds number, the Boussinesq number, the Voronkov number and the
Gurtin number. To the best of our knowledge, the migrational viscosity κ was first
introduced by Voronkov (1964) in his extension of the Gibbs–Thomson relation to
account for interfacial attachment kinetics. We therefore refer to the associated dimen-
sionless number as the Voronkov number. The migrational viscosity β , associated with
the change of orientation of the interface, was first introduced by Anderson et al.
(2005). We therefore refer to the associated dimensionless number as the Gurtin
number.

We next explore the influence of the dimensionless parameters Re, Bo, Vo and Gu
associated with the viscosity of the liquid phases and the effective and migrational
viscosities of the interface on the stability of the base process. As in the inviscid case,
we find it useful to make comparisons with results from the classical Rayleigh–Taylor
problem. For this problem the normal configurational momentum balance is irrelevant
and is replaced by the requirement V mig =0 that the interface be material. When com-
bined, the mass balance (1.6) and the condition V mig = 0 yield two interface conditions,
V = u+ · n and V = u− · n to be imposed along with linear momentum balance (1.7)
and the no-slip condition (1.11). Granted that the kinematical viscosities of the two
fluids are identical, the relevant amplitude equations lead to the dispersion relation

ω

|At|

{(
1 +

(1 − At2)q

At2(q − k)

)
ω2 +

4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

(
k2

2We
− At

)
k

Fr

}

+
Bok2

Re

{
qω2 +

(
k2

2We
− At

)
At2k(q − k)

Fr

}
= 0. (4.14)

4.1. Influence of the kinematical viscosity

We now consider the influence of kinematical viscosity ν of the phases while neglecting
the influences of the effective viscosity α + λ/2 and migrational viscosities κ and β of
the interface. In this case, Bo =0, Vo → ∞, Gu → ∞ and the general dispersion relation
(4.12) simplifies to

ω2 +
4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

{
k2

2We
− At

}
k

Fr
= 0. (4.15)

As one might expect, for At finite, setting Re → ∞ in (4.15) reduces (4.15) to
the dispersion relation (3.19) obtained in the case of an inviscid fluid without
mass transport in the base state. Another point of comparison is provided by the
appropriate dispersion relation for the classical Rayleigh–Taylor problem. Specifically,
when Bo = 0, (4.14) reduces to (Chandrasekhar 1961){

1 +
(1 − At2)q

At2(q − k)

}
ω2 +

4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

{
k2

2We
− At

}
k

Fr
= 0, (4.16)
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which differs from (4.15) only in the coefficient of ω2. In particular, upon setting ω = 0
in (4.15) and (4.16), we obtain an equivalent cutoff wavenumber kc =

√
2AtWe below

which perturbations are unstable. Hence, when the kinematic viscosities of the bulk
phases are identical, mass transport is not present in the base state, and the effective
and migrational viscosities of the interface, the range of unstable wave numbers for
the Rayleigh–Taylor problem with a phase transformation is identical to the range of
unstable wavenumbers for the appropriate version of the classical Rayleigh–Taylor
problem.

For At < 0, it is known that the system is stable for the classical Rayleigh–Taylor
problem. We now show that this result also holds when a phase transformation
occurs. Assume At < 0 and ω > 0. The final term on the left-hand side of (4.15) must
therefore be positive and the inequality

ω2 +
4|At|k2ω

Re
<

4At2k3(q − k)

Re2
(4.17)

must hold. Next, since

q =

√
k2 +

Reω

|At| = k

√
1 +

Reω

|At|k2
< k

{
1 +

Reω

2|At|k2

}
,

it follows from (4.17) that

ω2 +
4|At|k2ω

Re
<

4At2k3(q − k)

Re2
<

4At2k4

Re2

ωRe

2|At|k2
=

2|At|k2ω

Re

and, thus, that

ω < −2|At|k2

Re
< 0.

This last inequality contradicts the assumption that ω be positive. Provided that At < 0,
we therefore conclude that ω must be negative as well. (For At < 0 and ω complex
with positive real part, an analogous, but algebraically more involved, argument also
leads to a contradication.) Hence, when the kinematical viscosities of the bulk phases
are identical, mass transport is not present in the base state, and the effective and
migrational viscosities of the interface, instability is possible for the Rayleigh–Taylor
problem with a phase transformation only when the phase with the higher density is
above that with the lower density.

In view of the foregoing result, we observe that, when 0 < At < 1, the coefficient
of ω2 in (4.16) is greater than that in (4.15). For equal values of the parameters
0 < At < 1, Re and Fr, the magnitude of any unstable growth rate obtained from
the dispersion relation (4.15) for the problem with a phase transformation will exceed
that obtained from the dispersion relation (4.16) for the classical problem.

The parameters Re, We and Fr enter the dispersion relations (4.15) and (4.16) in an
identical fashion. The influence of these parameters on stability should not differ for
the problems with and without a phase transformation. Specifically, differentiating
(4.15) with respect to Fr, we find that for 0 <k <

√
2AtWe,

2

{
ω +

|At|k2(2q − k)

Req

}
∂ω

∂Fr
=

{
k2

2We
− At

}
k

Fr2
< 0.

Hence, the magnitude of the growth rate of the unstable wave modes decreases
with increasing Fr. Similarly, differentiating (4.15) with respect to Re and We, we
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Figure 5. Comparison of the relation for the growth rate ω versus the wavenumber k for
different Atwood numbers At: (a) phase transformation; (b) no phase transformation. Re= 1;
We = 0.1; Fr = 1; —, At = 0.01; – – –, 0.05; –·–, 0.1.
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Figure 6. Variation of the most unstable wavenumber km with the Atwood number At. —,
phase transformation; - - -, no phase transformation. Re= 1; We= 0.1; Fr = 1.

find ∂ω/∂Re > 0 and ∂ω/∂We > 0 for 0 < k <
√

2AtWe. The growth of an unstable
perturbation therefore increases for increasing Re and We.

Plots of the growth rate ω versus the wavenumber k for Re= 1, We= 0.1, Fr =1 and
various values of At are provided in figure 5. Consistent with analytical predictions, the
cutoff wavenumbers are indistinguishible and the growth rates for a phase interface
are at least an order of magnitude greater than those for a material interface. Also,
above the cutoff wavenumber, the growth rates for the phase transformation and
classical problems are pure imaginary and the base state is neutrally stable.

In constrast to the inviscid case, when the kinematic viscosity of the phases is taken
into consideration the most unstable wavenumber km for the problem with a phase
transformation is not necessarily less than or equal to its counterpart for the classical
Rayleigh–Taylor problem. This behaviour is illustrated in figure 6, which shows a
plot of km as a function of At for Re = 1, We= 0.1, and Fr =1. The behaviour is
complicated. Two solution branches exist for the classical problem. We plot only the
combination of those branches corresponding to the maximum value of the growth
rate. The plot shows that km lies below its classical counterpart for At sufficiently
close to 0 and 1; however, for intermediate values of At, km lies above its classical
counterpart.

The effect of varying the Froude number on the stability of the base state is
illustrated in figure 7, which shows plots of the growth rate ω versus the wavenumber
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Figure 7. Comparison of the relation for the growth rate ω versus the wavenumber k for
different Froude numbers Fr: (a) phase transformation; (b) no phase transformation. At = 0.05;
Re= 1; We = 0.1; —, Fr = 1; - - -, 5; –·–, 10.
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Figure 8. Comparison of the relation for the growth rate ω versus the wavenumber k
for different Reynolds numbers Re: (a) phase transformation; (b) no phase transformation.
At= 0.05; We= 0.1; Fr = 1; —, Re= 0.05; - - -, 0.1; –·–, 1.

k for At = 0.05, Re = 1, We= 0.1, and various values of Fr. Consistent with analytical
expectations, these plots show that the maximum growth rate decreases with increasing
Fr whether or not a phase transformation occurs. Moreover, varying Fr does not affect
the range of unstable wavenumbers.

The impact of varying the Reynolds number is more complicated. For At = 0.5,
We= 0.1, and Fr= 1, figure 8 shows that, for Re � 1, the system becomes more
unstable as the Reynolds number is increased. This effect is manifested whether or
not a phase transformation occurs, but it is more notable for the classical Rayleigh–
Taylor problem. For Re > 1, this effect is magnified: for the problem with a phase
transformation, the maximum growth rate for phase transformation problem changes
slightly from 0.04356 to 0.04387 when the Reynolds number changes from 1 to 100.
Again, consistent with analytical expectations, the range of unstable wavenumbers is
not affected by Re.

Plots of the growth rate ω versus the wavenumber k for At =0.5, Fr =0.1, Re =1,
and various values of We are shown in figure 9. These plots show that the range
of unstable modes and the maximum growth rate both decreases as We is decreased
and, thus, exhibit the stabilizing influence of interfacial tension.

4.2. Influence of the effective viscosity

Along with the kinematical viscosity ν of the bulk phases, we now consider the
influence of the effective viscosity α + λ/2 of the interface on the stability of the base
state. In so doing, we neglect the migrational viscosities κ and β of the interface. In
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Figure 9. Comparison of the relation for the growth rate ω versus the wavenumber k for
different Weber numbers We: (a) phase transformation; (b) no phase transformation. At =0.05;
Fr = 1; Re= 1; —, We= 0.1; - - -, 0.2; –·–, 0.3.
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Figure 10. Comparison of the relation for the growth rate ω versus the wavenumber k
for different Boussinesq number Bo: (a) phase transformation; (b) no phase transformation.
At = 0.5; Re= 1; We= 0.1; Fr = 1; —, Bo = 0; - - -, 10; –·–, 100.

this case Vo → ∞, Gu → ∞, and the dispersion relation (4.12) becomes

ω

{
ω2 +

4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

k

Fr

(
k2

2We
− At

)}

+
|At|Bok2

Re

{
qω2 +

(
k2

2We
− At

)
k

Fr
(q − k)

}
= 0, (4.18)

which should be compared with the dispersion relation (4.14) for the classical
Rayleigh–Taylor problem. Setting ω = 0 in both (4.18) and (4.14), we find that the
cutoff wavenumber below which perturbations are unstable is identical for the prob-
lems with and without a phase transformation and again given by kc =

√
2AtWe. Thus,

accounting for the dilatational and shear viscosities of the interface does not influence
the range of unstable wavenumbers. Next, when At < 0, the terms associated with Bo
are positive in both (4.18) and (4.14). Arguing as in the case when only the kinematical
viscosities of the phases are taken into account, we therefore find that instability is pos-
sible only when the phase with the higher density is above that with the lower density.

For small At, the effect of varying Bo is not very significant. To make the effects
of Bo discernible, we therefore choose a relatively large value of At. Specifically, for
At =0.5, Re = 1, We= 0.1, Fr =1, and various values of Bo, figure 10 shows plots of
the growth rate ω versus the wavenumber k. These plots show that a phase interface is
slightly more susceptible to the influence of the effective viscosity α + λ/2. Consistent
with intuitive expectations, the role of effective viscosity is to dissipate the energy of
the disturbance and thereby decrease the magnitude of the growth rate corresponding
to any unstable mode.
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Figure 11. Comparison of the relation for the growth rate ω versus the wavenumber k for
different Vo and Gu: (a) different Vo (Gu → ∞); (b) different Gu (Vo → ∞). At =0.05; Re =1;
We= 0.1; Fr =1; —, Vo → ∞, Gu → ∞; - - -, Vo = 100, Gu =1; –·–, 10, 0.1.

4.3. Influence of the migrational viscosities

Along with the kinematical viscosity ν of the bulk phases, we now consider the
influence of the migrational viscosities κ and β of the interface on the stability of the
base state. In so doing, we neglect the effective viscosity α + λ/2 of the interface. In
this case Bo = 0 and the dispersion relation (4.12) can be expressed as{

2q +

(
1

Vo
+

k2

Gu

)
k(q − k)

}{
ω2 +

4|At|k2ω

Re
− 4At2k3(q − k)

Re2
+

(
k2

2We
− At

)
k

Fr

}

+

{
1

Vo
+

k2

Gu

}
(1 − At2)kqω2

At2
= 0. (4.19)

Setting ω =0 in (4.19) shows, once again, that the cutoff wavenumber below which
perturbations are unstable is kc =

√
2AtWe. Also, since the second term on the right-

hand side of (4.19) is non-negative and the remaining term involves the product of a
non-negative factor with the term appearing on the left-hand side of the dispersion
relation (4.15), we may conclude as before that instability is possible only when the
phase with the higher density is above that with the lower density.

Plots of the growth rate ω versus the wavenumber k, for At = 0.05, Re = 1, We= 0.1,
Fr = 1, and various choices of Vo and Gu are provided in figure 11. The plots confirm
that, like the shear and dilational viscosities, the migrational viscosities of the interface
exert a stabilizing influence.

5. Summary
As is the case for the classical Rayleigh–Taylor problem, our analysis shows that

a liquid–liquid phase interface is unstable only when the phase with the higher
density is above that with the lower density. When the viscosities of the phases and
the interface are neglected, we find that the presence of mass transport in the base
state decreases the growth rate of any unstable perturbation. The Atwood number
At, Weber number We, and the Froude number Fr play the same roles as they do
for the classical Rayleigh–Taylor problem. Specifically, larger At and We lead to
a more unstable system while increase in Fr tends to stabilize the system. In the
viscous case, we assume that the kinematical viscosities of the phases are equal. We
also neglect mass transport in the base state. When the various interfacial viscosities
are neglected, we find that the growth rate of unstable modes increases with the
Reynolds number Re. The Weber number We and Froude number Fr play the same
roles for inviscid and viscous fluids. The range of unstable modes is insensitive to
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variations of these numbers. However, the growth rates of unstable modes increase
and decrease, respectively, when We and Fr are increased. When the migrational
viscosities of the interface are neglected, but the dilational and shear viscosities of the
interface are taken into account, we find that the associated Boussinesq number Bo
does not affect the range of unstable modes, but diminishes slightly the growth rate
of unstable modes. When the dilatational viscosity of the interface is neglected, but
the migrational viscosities of the interface are taken into account, we find that the
roles of the associated dimensionless parameters, the Voronkov number Vo and the
Gurtin number, Gu are very similar to that of Bo. However, while they do not alter
the interval of unstable modes, their impact on the growth rate is more significant.

Following Taylor (1950), our framework can be extended to show that the gravita-
tionally unstable arrangement, when the phase with the higher density is above that
with the lower density, is stabilized by acceleration in the direction of gravity.

We leave for a future work the question of how viscosity influences the stability of
base states involving mass transport. Also, a more comprehensive study of the
instability of a liquid–liquid phase interface would generally require the consideration
of a finite system with bounding surfaces and, perhaps, contact lines. The inclusion of
bounding surfaces requires extra boundary conditions (Elgowainy & Ashgriz 1997)
and the assumption of exponentially decaying velocity and pressure field in the
perpendicular direction would not be valid. Consequently, an algebraic dispersion
relation like (4.12) might not exist and partial differential equations requiring
numerical simulation would most probably arise. To account for contact lines, it would
be necessary to extend the theory developed by Anderson et al. (2005) in the manner
discussed by Gurtin (2000). Moreover, different results might be expected if either the
bulk extra stress (1.5) or the interfacial extra stress (1.8) were non-Newtonian.

Finally, we hope that the stability results presented here will lead to experimental
tests in systems such as those considered by Aasland & McMillan (1994), Togaya
(1997), Glosli & Ree (1999), and Katayama et al. (2000).

This work was supported by the U S Department of Energy. We thank Bill Phillips
and Oleg Chkliaev for very helpful discussions and suggestions.
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